Skip to Content Facebook Feature Image

理大與西安交通大學宣布共建愛國主義教育基地 簽備忘錄構建長效合作機制

社會事

理大與西安交通大學宣布共建愛國主義教育基地  簽備忘錄構建長效合作機制
社會事

社會事

理大與西安交通大學宣布共建愛國主義教育基地 簽備忘錄構建長效合作機制

2025年12月10日 19:39 最後更新:20:07

香港理工大學與西安交通大學日前宣布合作共建「香港理工大學愛國主義教育基地」,11月底在西安舉行揭牌儀式,兩校校長之後簽署合作備忘錄,構建長效合作機制。

香港理工大學FB

香港理工大學FB

理大校董會主席林大輝表示,基地通過課程設計和多元活動,讓師生進一步了解中華文化,國家在現代百年的奮鬥,以及新時代的輝煌成就,提升師生對國家的認同感、自豪感和歸屬感,助力他們更好融入國家發展大局,為中華民族偉大復興與國家富強、貢獻力量。

林大輝。香港理工大學FB

林大輝。香港理工大學FB

理大表示,作為首間於內地設立愛國主義教育示範基地的香港高校,將與西安交大資源共享、優勢互補。基地將深度融入愛國主義科研文化,以國家戰略需求為導向,凝聚理大與西安交大雙方優勢,例如在人工智能、半導體及新材料等前沿領域深化科研協作。

香港理工大學FB

香港理工大學FB

理大提到,基地建設獲中央、特區與地方政府三方支持,不但為基地長遠發展提供堅強後盾,亦為香港與內地青年搭建互學互鑒的橋樑,正積極籌辦首個學生代表團,計劃於明年春季赴西安參訪基地,並與當地師生和企業在科技創新、體育及文藝等範疇進行交流,從而拓闊視野,加深對國家發展的認識。

作為人工智能(AI)領域的新興技術,圖神經網絡(GNN)是一種專門處理圖結構數據的深度學習模型。目前,GNN 主要擅長處理數據中節點與邊之間的關係,但往往忽略了高階的複雜連結,香港理工大學(理大)研究團隊研發的新型異構圖注意力網絡成功解決這一挑戰,革新了圖結構數據的複雜關係建模,有望突破 AI 在神經科學、物流、電腦視覺、生物學等多個領域的應用限制。

研究團隊將 HL-HGAT 應用於功能性磁振造影數據分析,在神經科學與醫療診斷上有顯著應用價值。

研究團隊將 HL-HGAT 應用於功能性磁振造影數據分析,在神經科學與醫療診斷上有顯著應用價值。

簡單來說,傳統 GNN 主要考慮「A 連接 B」、「B 連接 C」這樣的成對關係,卻難以理解 A、B、C 三者的群體互動。由理大醫療科技及資訊學系教授、傑出創科人教授仇安琪教授及其研究團隊設計的新型「霍奇-拉普拉斯異構圖注意力網絡(Hodge-Laplacian Heterogeneous Graph Attention Network,HL-HGAT)」,能夠學習和分析不同層次的異質信號,捕捉多種圖結構間的複雜關聯。

在數學上,k-單體是高維幾何的基本元素,能夠捕捉多個節點之間的高階關聯:0-單體為單一節點,1-單體為連接兩個節點的邊,2-單體為三個節點構成的三角形,如此類推。HL-HGAT 模型將圖形解釋為單體複形,可同時捕捉節點、邊、三角形等多層次結構間的複雜互動,全面提升模型對數據複雜關係的理解能力。

HL-HGAT 的核心為霍奇-拉普拉斯(Hodge-Laplacian,HL)算子,它提供了一個可在單體複形上建模及傳播訊號的數學框架,使該網絡能夠突破成對關係的限制,為結構數據中的複雜、多層次的交互作用建構更精確的模型。在動態圖領域,HL-HGAT 的重大突破則在於它能將高階拓樸表徵擴展至時域,並結合高效的 HL 濾波、自適應注意力機制及異構訊號分解,揭示傳統靜態 GNN 無法捕捉的複雜時變模態。

理大醫療科技及資訊學系教授、傑出創科學人教授仇安琪教授設計了一種新型的「霍奇-拉普拉斯異構圖注意力
  網絡」(HL-HGAT),革新了圖結構數據的複雜關係建模,有望突破 AI 在神經科學、物流、電腦視覺、生物學等多個領域的應用限制。

理大醫療科技及資訊學系教授、傑出創科學人教授仇安琪教授設計了一種新型的「霍奇-拉普拉斯異構圖注意力 網絡」(HL-HGAT),革新了圖結構數據的複雜關係建模,有望突破 AI 在神經科學、物流、電腦視覺、生物學等多個領域的應用限制。

仇教授表示:「HL-HGAT 模型在各種基於圖的場景,包括是理論優化問題,或實際生物醫學應用等方面,皆展現廣泛效用及豐富功能。該模型已在各種圖應用中進行了全面評估,結果證明其作為統一框架的適應能力,能夠跨學科地處理優化、分類、回歸及多模態學習等任務。」

研究團隊在多個領域進行了全面測試:在物流領域,HL-HGAT 有效解決經典的「旅行商問題」(如何規劃最短配送路線),為物流公司節省大量時間和成本;電腦視覺領域,HL-HGAT 將影像轉換為圖形結構進行分析,其表現在 CIFAR-10影像分類測試中超越了傳統的 GNN,能更精準地捕捉影像中的細節特徵;在化學領域,HL-HGAT 在預測分子特性方面取得卓越準確度,有助加速新藥開發進程。

在神經科學與醫療診斷上,HL-HGAT 亦展現出極高的應用價值。團隊將其用於功能性磁振造影(fMRI)數據分析,能準確預測智力表現與大腦年齡,更能在抑鬱症患者的腦網絡中發現預設模式網絡和邊緣系統中異常的「三方神經區域互動」——這些細微變化是傳統方法無法察覺的。此外,在 HL-HGAT 也可檢測出阿茲海默症患者早期的皮質變薄與神經連接中斷,有助更及時發現病徵。

此創新的 HL-HGAT 模型不但在科學及工業應用中針對各種基於圖的複雜任務展現了卓越成果,更標誌着圖神經網絡技術的重要進展。該研究名為「HL-HGAT:霍奇-拉普拉斯算子的異構圖注意力網絡」,已發表於《IEEE 模式分析與機器智能學報》(IEEE Transactions on Pattern Analysis and Machine Intelligence)。

你 或 有 興 趣 的 文 章