Skip to Content Facebook Feature Image

理大研究破解中藥提取物粉防己鹼的關鍵標靶機制 開啟病毒感染及阿茲海默症治療新途徑

醫健事

理大研究破解中藥提取物粉防己鹼的關鍵標靶機制 開啟病毒感染及阿茲海默症治療新途徑
醫健事

醫健事

理大研究破解中藥提取物粉防己鹼的關鍵標靶機制 開啟病毒感染及阿茲海默症治療新途徑

2025年10月08日 13:18 最後更新:13:18

過去有研究發現源自傳統中藥粉防己根部的化合物粉防己鹼(tetrandrine)能有效防止伊波拉病毒感染,但當中的確切作用機制仍未被證實。香港理工大學(理大)研究人員發現,粉防己鹼能藉由阻斷細胞訊號傳導的關鍵脂質分子鞘氨醇(sphingosine)的輸送,抑制鈣通道。研究首次揭示了粉防己鹼的關鍵作用機制,有望推動新藥研發及創新治療方案。

團隊利用了特製光親和探針等先進技術,將粉防己鹼的細胞靶點圖像化,發現它可以透過靶向 LIMP-2,改變溶酶體的鈣離子釋放。

團隊利用了特製光親和探針等先進技術,將粉防己鹼的細胞靶點圖像化,發現它可以透過靶向 LIMP-2,改變溶酶體的鈣離子釋放。

粉防己鹼以強大的抗病毒、抗炎及抗癌特性而為人所知,它亦被發現能夠抑制菸酸腺嘌呤二核苷酸磷酸(NAADP)介導的鈣離子外流,從而抵抗伊波拉病毒感染。長久以來,科學界一直認為粉防己鹼是透過直接阻斷鈣通道及鈣離子釋放來激發藥理活性;鈣是調節細胞功能與生理活動的重要因子,在抵抗感染、新陳代謝、維持大腦與神經元功能及病毒複製過程起着關鍵作用。

由理大應用生物及化學科技學系副教授柯子斌教授帶領的研究團隊,利用特製光親和探針等先進技術,將粉防己鹼的細胞靶點圖像化,發現粉防己鹼並非直接靶向鈣通道,而是與細胞代謝樞紐溶酶體 (lysosome)上的 LIMP-2 蛋白結合,進而抑制溶酶體釋放鞘氨醇。細胞鞘氨醇的含量直接控制着鈣通道的活性——也就是說,被釋放的鞘氨醇越少,能進入細胞的鈣就會越少。

基於這個重大發現,研究團隊進一步提出,粉防己鹼可以透過靶向 LIMP-2,改變溶酶體的鈣離子釋放,進而干擾某些病毒的存活及複製,包括伊波拉病毒及新型冠狀病毒等,為應對病毒感染開啟了新的可能性。此外,這項發現啟發了以溶酶體相關機制作為藥物研發的新方向,為治療常見由鈣失衡引起的問題,例如阿茲海默症、帕金森氏症等神經退化性疾病,以及部分癌症的轉移,提供了創新的治療策略。

理大應用生物及化學科技學系副教授柯子斌教授帶領的研究團隊突破性發現提取自傳統中藥的粉防己鹼的關鍵作用機制,為應對病毒感染及治療阿茲海默症、帕金森氏症等神經退化性疾病開啟了新的治療可能性。

理大應用生物及化學科技學系副教授柯子斌教授帶領的研究團隊突破性發現提取自傳統中藥的粉防己鹼的關鍵作用機制,為應對病毒感染及治療阿茲海默症、帕金森氏症等神經退化性疾病開啟了新的治療可能性。

柯教授表示:「這是首次發現 LIMP-2 具有影響鈣訊號傳導的功能,顛覆了傳統認知。從細胞生物學的角度來看,我們的研究揭示了透過 LIMP-2 和鞘氨醇介導的全新NAADP 調控鈣訊號傳導途徑;從抗病毒治療的角度來看,我們則找出了 LIMP-2 作為粉防己鹼的關鍵標靶,可抑制伊波拉病毒,或能更廣泛地應用於其他抗病毒治療。 」

此外,在研究粉防己鹼的生物機制時,團隊構建了一個結合光親和探針與多組學分析的科技平台,可廣泛用於研究天然產物的生物學特性。更重要的是,該平台可協助研究人員辨識其他天然化合物的分子標靶,尤其是源自傳統中藥的天然產物,促進嶄新分析技術與傳統中藥的融合,以及天然產物的現代化應用,提高其在治療頑疾方面的藥用潛力,推動開發創新藥物。

這項開創性研究重新定義了粉防己鹼以至其他天然化合物在現代治療策略中的應用模式,有關成果已以《粉防己鹼通過依賴 LIMP-2 和鞘氨醇介導的機制調控由 NAADP 介導的鈣訊號傳導》為題刊載於《自然通訊》(Nature Communications)。

工業 5.0 時代的核心在於人機協作,香港理工大學(理大)科研團隊在此領域取得創新突破,研發出新一代「人機共生」協作製造系統,不僅能實時感知複雜環境、準確解讀操作人員意圖,更能通過簡單示教學習,完成技能遷移和自動學習,並實現自主的工藝代碼生成與高準確度任務執行的自動調節,已成功應用於大型飛機自主製孔、電動車電池拆解等高端製造任務,為業界打造「人本智能製造」新模式奠定重要基石。

人機之間的協同運作,旨在結合人類的靈活應變與適應能力,以及機器的高精準度與穩定性,發揮各自最大價值。這套「互相認知人機協作製造系統」,由理大黃鐵城智能機器人學青年學者、工業及系統工程學系副教授鄭湃教授及其科研團隊開發,一改傳統倚賴預編程設計,以整體場景理解為核心,通過收集及分析視覺、觸覺、語言及生理信號等多模態感知訊息,實現高準確度與全方位的環境分析,並可自主作出決策及靈活執行任務。

該「互相認知人機協作製造系統」能支援機器人執行情境認知、工具調用及密集接觸,完成複雜任務。

該「互相認知人機協作製造系統」能支援機器人執行情境認知、工具調用及密集接觸,完成複雜任務。

該新系統具備先進的機器學習與三維場景感知能力,兼具效率與安全性,大大促進了人與機器人在複雜製造場景中的流暢互動。透過產業合作項目,團隊已為多家領先企業量身打造人機協作系統,並成功於多種場景落地,主要涉及精密或複雜的工序。

鄭教授表示:「全球製造業轉型都正追求人機共生模式,看重更具彈性的自動化效能。我們的研究旨在構建一種嶄新人機協作架構,提供具有多模態自然感知、跨場景技能遷移、域模型自主執行的智能機器人製造系統,使機器人不再只是工具,而是能與操作人員同步演進的智能體,為智慧工廠突破基於預編程的自動化手段提供新方案。」

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

半結構化、非結構化生產場景,例如個性化產品製造,通常涵蓋大規模、複雜的產品組裝、拆解與檢測流程,要求高認知及快速適應能力。研究團隊引入新穎的「視覺語言導引」規劃架構,融合大型語言模型、深度強化學習等前沿人工智能技術,輔以混合實境(MR)頭戴式裝置,提升應對個性化與其他不可預測生產任務的能力。

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

該架構關鍵創新在於結合了視覺語言導引的目標分割模型,以及由語言指令驅動的任務規劃方法,令系統能整合視覺資訊與語言指令,協助機器人掌握複雜任務語意及識別動態場景,從而與操作人員高效協作。其中,頭戴式裝置能夠提供實時數據擷取,為操作人員提供即時、直觀的引導,亦革新了人機互動介面。

鄭教授強調:「未來智能製造的發展方向不是讓機器變得更聰明去取代人類,而是在人與機器共同學習、調適與成長的模式中,創造出更高的生產力與靈活性。為滿足此發展需求,下一代機器人械臂需具備在人類引導下持續學習與優化的能力,才
能實現高效且自然的人機互動。」

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

研究構建了一種嶄新人機協作架構,可因應應用場境打造不同的智能機器人製造系統,輔以頭戴式裝置後更能夠提供實時數據擷取,為操作人員提供即時、直觀的引導。

為進一步推動人機協作系統的進步,鄭教授將帶領研究團隊深入探索多個關鍵技術,包括具自我組態能力的人機網絡、技能轉移機制,以及自主多智能體的任務執行方式,建構「深度人本」的智能製造系統,並拓展至更多重要領域,令社會邁向一個由科技賦能、具同理心與人性導向的智能新世代。

理大黃鐵城智能機器人學青年學者、工業及系統工程學系副教授鄭湃教授(前排中)帶領科研團隊開發的「互相認知人機協作製造系統」,能實時感知複雜環境、準確解讀操作人員意圖,並自主作出決策。項目亦
   瑞典皇家理工學院可持續製造系講座教授及國家卓越生產研究中心主任王力翬教授(前排右)合作。

理大黃鐵城智能機器人學青年學者、工業及系統工程學系副教授鄭湃教授(前排中)帶領科研團隊開發的「互相認知人機協作製造系統」,能實時感知複雜環境、準確解讀操作人員意圖,並自主作出決策。項目亦 瑞典皇家理工學院可持續製造系講座教授及國家卓越生產研究中心主任王力翬教授(前排右)合作。

鄭湃教授一直致力研究「人機共生」協作製造系統,並獲選 2024 年度國家自然科學基金的「優秀青年科學基金項目」。鄭教授帶領 RAIDS 科研團隊進行以上研究項目,詳情:https://www.raids.group/

你 或 有 興 趣 的 文 章